Restoring ecologically beneficial fire to the Lake Tahoe Basin:

A planning and management approach

Presented by: **Randy Striplin** - Fire Ecologist **Michael Papa** – Harvest/Contract Inspector

USDA Forest Service Lake Tahoe Basin Management Unit

Background

- Forest Service focus is increasing resilience and sustainability of LTB forest resources in the face of multiple stressors
 - Using pre-Euroamerican conditions as a short- to medium-term waypoint
- Disruption of natural processes:
 - Fire suppression, urbanization, fragmentation, climate change, Comstock logging, mining, grazing, ...
- The forest matrix has changed significantly
 - Conditions in the LTB necessitate active management
 - This includes structural manipulations, application of prescribed fire, and managed wildfire when possible

Current Conditions

Two main forest types where fires and management activities occur in the LTB:

White Fir-Mixed Conifer

- Lake level to ~7500 ft., most common on Northwest & West shores
- Associate species: JP, SP, LP, RF, IC
- % LTB forest cover (Year) = <10% (1935); >20% (2003)

Jeffrey Pine

- Lake level to >8000 ft., dominant up to 7500 ft. especially in Carson Range
- <u>Associated species:</u> WF, RF, LP, WWP, IC
- % LTB forest cover (Year) = ~40% (1935); 19% (2003)

Desired Conditions

- Historic annual area burned = 2000 8000 acres
 - Varies by forest type, elevation, literature source
- Mean fire size = 500 600 acres (dependent upon slope, aspect, etc.)
 - Median fire size are much smaller (dominated by small/very small fires)
- Fires typically burned in the conifer dormant season
 - Typically beginning in Aug./Sept. for this area
 - Shown in many dendrochronological fire scar studies where scars are found in latewood

Forest Type	TPA (>1″dbh)	BA (ft^2/ac)	Snags/ac (>20" dbh)	CWD* (tons/ac)	Patch (ac)
JP	<70	<100	1-2	0.5-6.0	0.01-0.50
WF-MC	100	<250	2-10	1.0-10.0	0.05-0.75

* Coarse Woody Debris is highly variable [range= 0.0-150.0]

Desired Conditions

- White Fir-Mixed Conifer (uneven-aged)
 - Fire type: ground/surface fire, active canopy fire rare
 - Fire Return Interval (w/ surrogates): 10-30 years
 - Contiguous crown fire area: <10 acres
 - Stand replacing fires occur on 15% of burned acres
 - Composition (WF : shade intolerant) = 1:1 (2:1, mesic)
- Jeffrey Pine (uneven-aged)
 - Fire type: surface fire primarily, no active canopy fires
 - Fire Return Interval (w/ surrogates): 7-20 years
 - Contiguous crown fire area: <5 acres
 - Stand replacing fires occur on 5% of burned acres
 - Composition (JP : shade tolerant) = 3:1 (< 3:1, mesic)</p>

Constraints & Complexity

- Conditions in which fire can be put on the ground are limiting factors/ constraints:
 - Current forest/fuel structure
 - Pre-treatment needed (hand/mechanical)
 - Regulations
 - CARB Burn Days
 - Environmental
 - Resource availability
 - Staffing, contingency resources, funding
 - Policy
 - Only natural ignitions for resource objectives in designated areas

- LT Basin Complexity:
 - 2 States
 - 6 counties, 1 rural area
 - 7 Fire Protection Districts
 - Multiple towns/cities, permitting agencies, special interest groups...
 - Class 1 airsheds
 - Smoke Sensitive Receptors'
 - Highly regulated water resources

Quantify and compare the <u>limiting factors</u> associated with implementing Prescribed & Managed Wildfire in terms of:

- Average occurrence and consecutive burn days within burn plan prescriptions (Rx)
- Estimated acres of potential managed wildfire (natural ignitions outside of WUI-DZ)
- Seasonality of fire resource/personnel availability

Analyses & Data

1) Burn Days in Prescription (Rx)

- Multiple consecutive burn days
- Seasonality of available days
 - Data: RAWS and CARB

2) Potential Managed Wildfire

- FS Pro (Fire Spread Probability) model
- Best-case analysis (every lightning ignition = managed wildfire)
 - Data: Historical lightning strikes & ignitions

3) Fire Resource Availability

Feasibility of Rx & Managed Wildfire in season

National & NOPS (Nor. Calif.) GACC Preparedness Levels (PL)

Analysis of Burn Days in Prescription

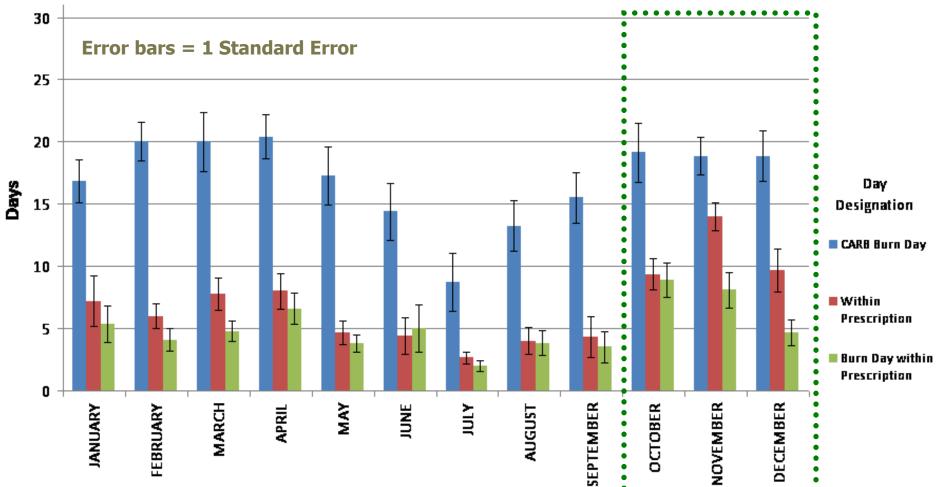
- 1) Burn Plan Rx:

 RAWS data: Meyers, CA
 Relative Humidity
 20-50%

 20-foot 10-minute average windspeed

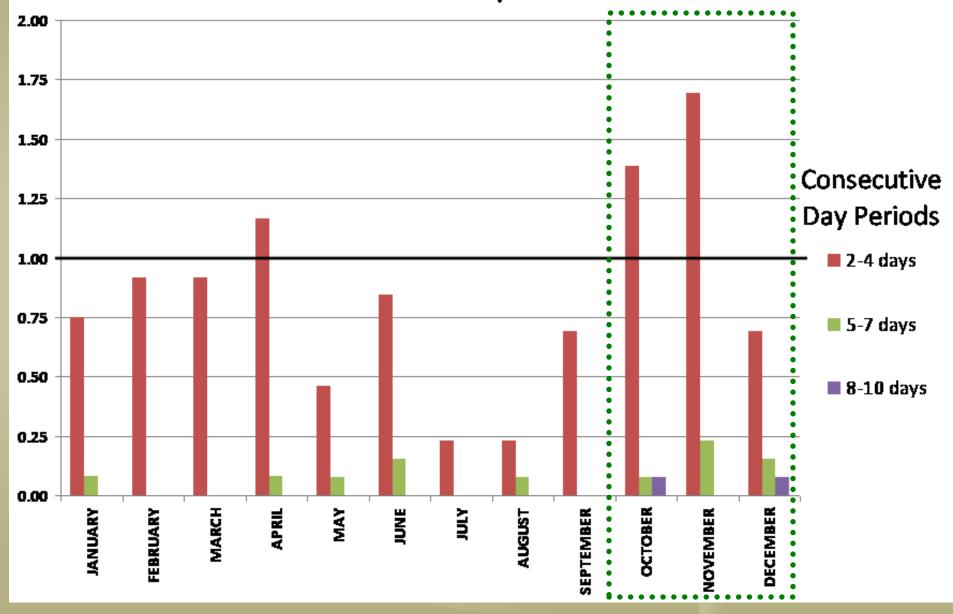
 <25 mph
 10-hr Fuel Moisture
 7-20%
- * All three measures must be within Rx limits for ignition.

- 2) CARB Burn Day
 - Ultimate decision
 - Burn Day vs. No Burn Day
 - Marginal, amended, etc.
 - Created binary dataset

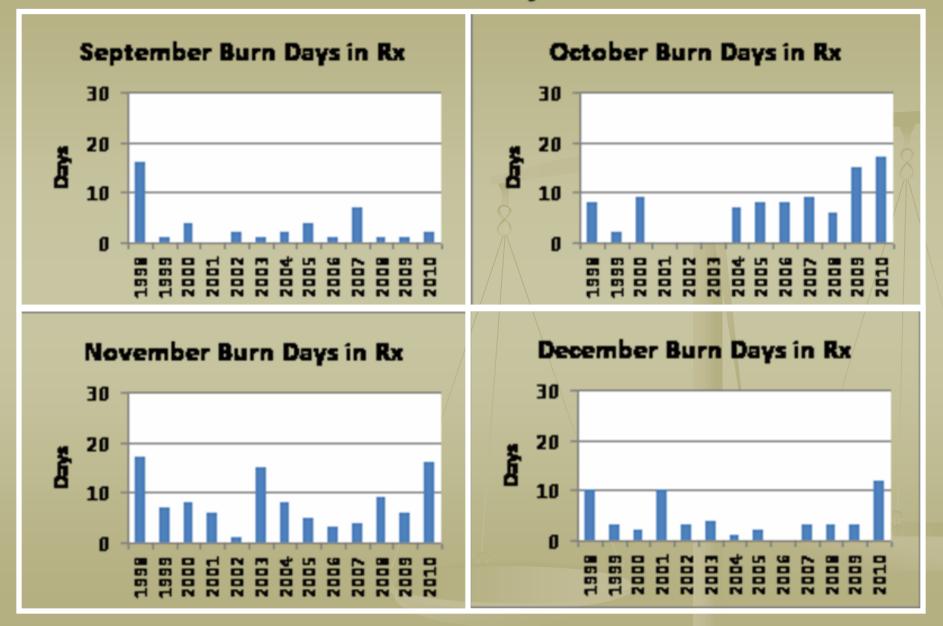

1 = CARB Burn Day

3) BURN DAY in Rx All FOUR criterion (1 & 2) must be valid.

Multiple Consecutive Burn Days in Rx

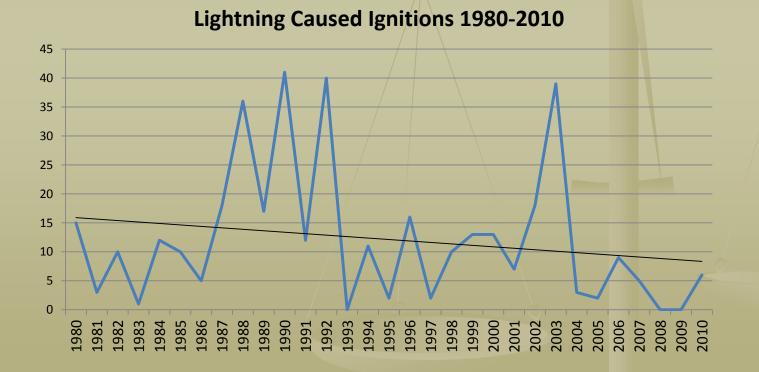

"Count" equation in Excel based on previous day's determination

Average of Day Designations by Month (May 1998 - December 2010)



(Data is continuous from May 1998 through December 2010)

Average Monthly Occurence of Multiple Burn Days in Prescription


Annual Burn Day Variation

Potential Managed Wildfire

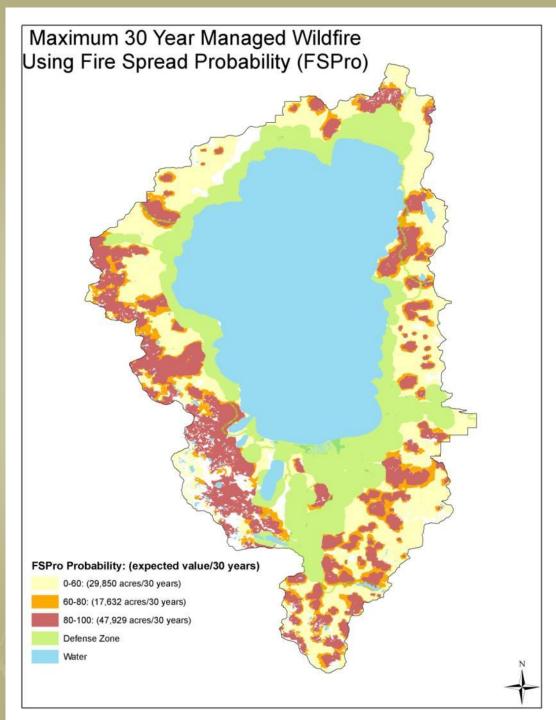
Average natural ignitions/year= 11.9 (SE=0.62)

- Only averaging 3 ignitions per year last 9 years (including 4 ignitions in 2011). Probably cyclic.
- 4.2% of lightning strikes cause an ignition
- However, related more to receptive fuels

Potential Managed Wildfire

FS Pro- Geospatial model

- Parameters & Assumptions
 - Best-case: Every lightning ignition (1990-2009)
 - 500 fire growth iterations for each ignition point
 - 7-day burn modeled for Aug. 1st ignition (2007, 2009, 2011)
 - Dry, average, and wet precipitation year (respectively)
 - Majority of lightning strikes and ignitions occur in July-August
- <u>Output:</u> Each cell assigned to a probability bin based on number of times burned
 - Expected Value = polygon acres x mid-bin probability value
 - 0-60% (Not included in estimate due to low confidence)
 - 60-80%, 80-100% (Potential Managed Wildfire)
- Fire spread restricted by:
 - Other ignition's fire spread
 - Boundaries of the Lake Tahoe Basin and WUI Defense Zone


Results:

Annual Average

- 80-100% = 1,598 ac.
- **60-80%** = **588** ac.
- 0-60% = 995 ac.
- Potential Mean Annual Managed Wildfire = 2186 aC

Total (30 years)

- **80-100%** = 47,929 ac.
- **60-80%** = **17,632** ac.
- 0-60% = 29,850 ac.
- Potential total area burned in model = 65,561 ac

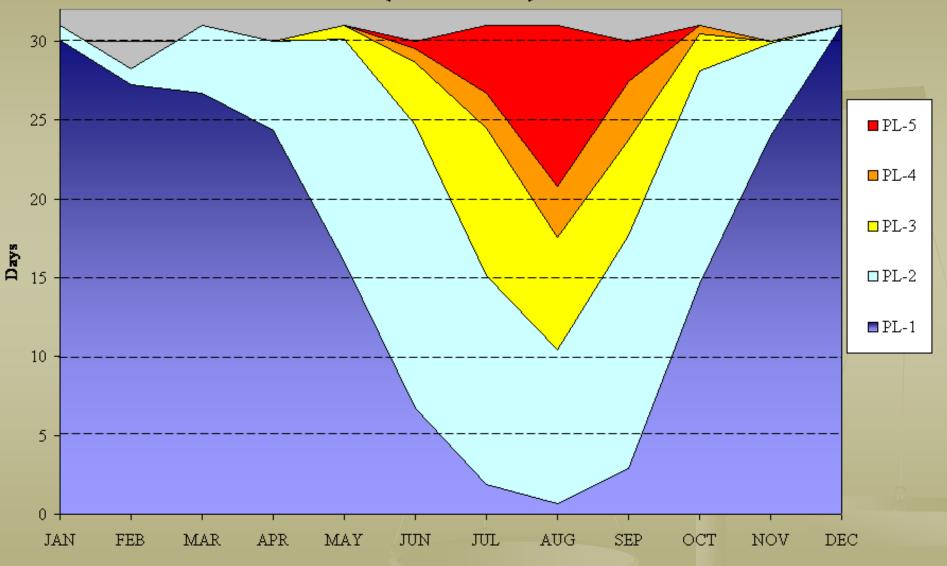
Potential Managed Wildfire

Additional FSPro outputs

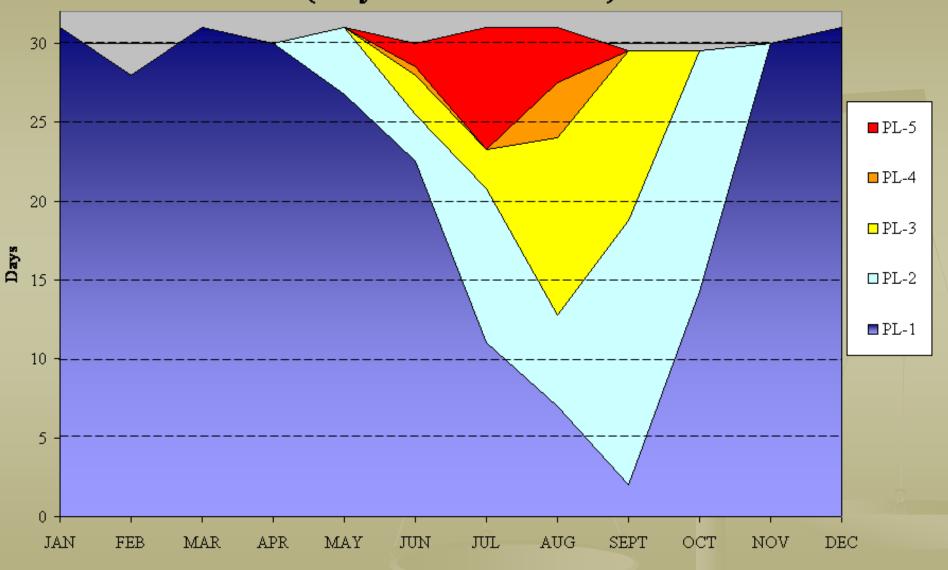
- Also model runs for 2007 and 2011
- 2007 was a dry year conducive to large fires
- 2011 followed a record precipitation year for the LTB
- 2009 an average precipitation year for LTB

Year	0-60	60-80	80-100	60-100
2007 (dry)	957	796	3,883	4,679
2009 (avg.)	995	588	1,598	2,186
2011 (wet)	999	441	663	1,104

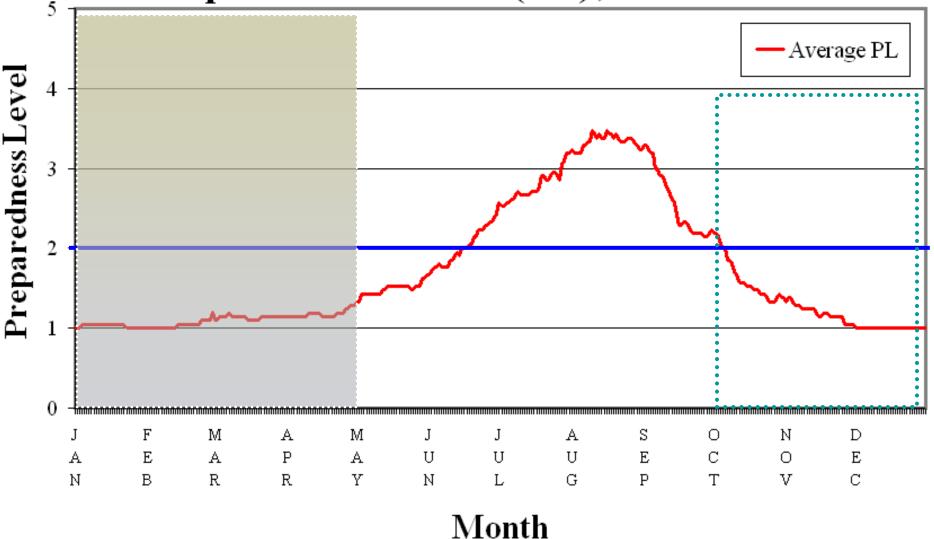
Fire Resource Availability

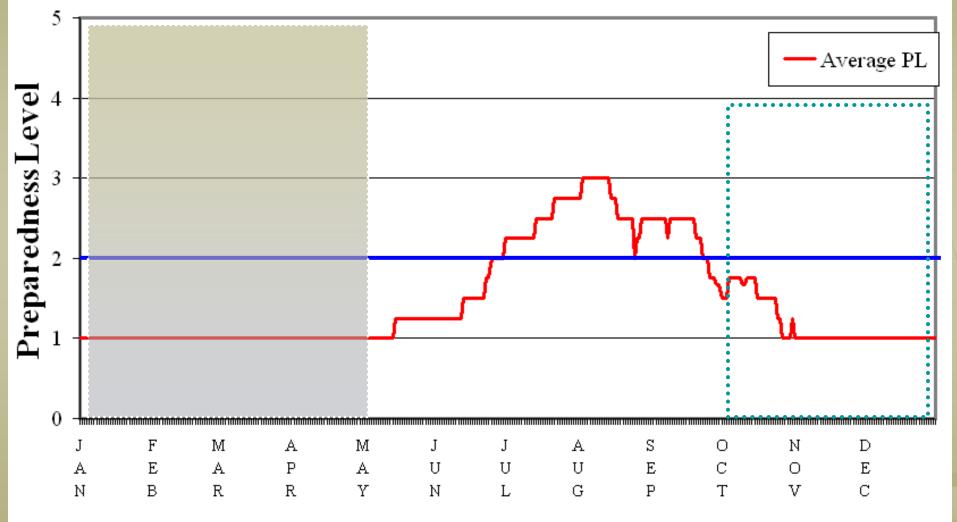

National & NOPS Preparedness Level (PL)

- Measures the proportion of committed resources for the given geographic area daily (IMTs, crews)
- Surrogate measure for 'availability'
- Levels 1 5 (e.g. 'PL-5' most resources committed)


Assumption:

- More committed resources means fewer assigned and contingent resource coverage for Rx & Managed Wildfire implementation
- PL-3 -- PL-5 = inadequate available resources
 - >50% of resources committed to incidents in more than two geographic areas


Average Monthly National Preparedness Level Days (1990-2009)


Average Monthly NOPS Preparedness Level Days (May 2008 - Mar. 2012)

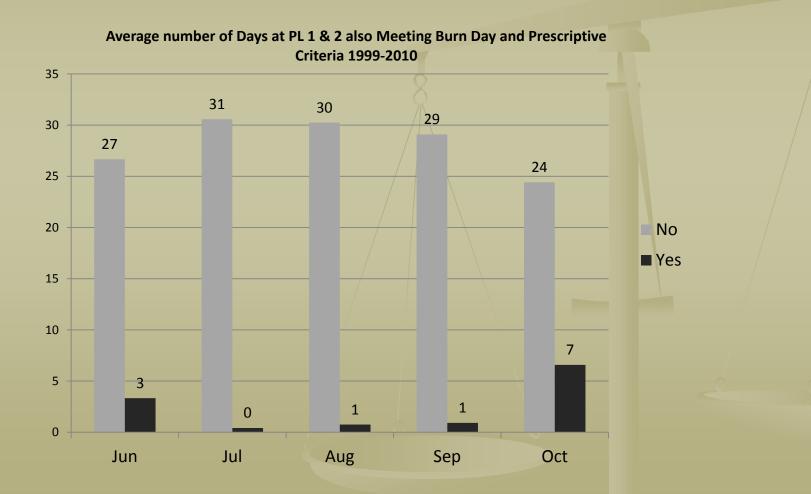
20-Year Daily Average of National Preparedness Level (PL); 1990-2010

4-Year Daily Average of NOPS (GAC) Preparedness Level; May 2008- Mar. 2012

Month

Summary of Results

Burn Day Analysis:


- Average Late Season (Oct-Dec) Burn Days = 22
- Average Consecutive Burn Days:
 - 2-4 day period = >1 per month (most abundant)
 - 5-7 day period = 1 per 2 years
 - 8-10 day period = 1 per 5 years
- Potential Managed Wildfire:
 - Potential Mean Annual Managed Wildfire = 2,186 ac
- Fire Resource Availability:
 - Vast majority of Oct.-Dec.= PL-1 or PL-2 (Nat'l & NOPS)
 - July September highly variable (>PL-2)
 - National = Questionable; NOPS = Somewhat feasible

Summary of Results

- Most natural ignitions occur July-Sept. (92%) and might continue to spread until first winter storm.
- Therefore the most ecologically beneficial fire (RX or Managed) should be during this period.
- Historically (1999-2010), between June & Oct. NOPS
 PLs 1 and 2 occur very infrequently (Avg. 12 days total Jun.-Oct. Only 2 days Jul.-Sep.).

Summary of Results

 Fire Resource Availability with Burn Day and Prescriptive Criteria Met June-October 1999-2010

Conclusions & Discussion

- Burn whenever possible!
 - Which is most likely October December
 - With valid Burn Days in Rx and available resources
- Restoring pre-Euroamerican influenced fire regime is more difficult than number of acres burned annually.
- Only analyzing 3 limiting factors
 - Social, health and fiscal concerns may trump all analyses presented here
 - Risk aversion/mitigation among line officers and fire managers is <u>always</u> a factor

Conclusions & Discussion
 Forest Service focus on forest resilience and restoration:

- The quantifiable analyses show a departure between desired conditions and predicted restoration capabilities...
 - Is restoration of ecologically beneficial fire feasible?
- How can we expect risk to values to affect fire management decisions?

Will that impact feasibility?

- Can the void be filled by Rx, managed wildfire, and fire surrogates? Or are we shooting for the Moon?
 - When you shoot at the Moon, you MIGHT hit the pie in the sky!

Questions?

Thank You

Comments, questions, or suggestions: Randy Striplin: rlstriplin@fs.fed.us Michael Papa: mpapa@fs.fed.us